1 |
Introduction to Data Science |
|
2 |
Introduction to Pandas in Python |
|
3 |
How to Install Python Pandas on Windows and Linux |
|
4 |
How To Use Jupyter Notebook: An Ultimate Guide |
|
5 |
Python → Pandas DataFrame |
|
6 |
Creating a Pandas DataFrame |
|
7 |
Python → Pandas Series |
|
8 |
Creating a Pandas Series |
|
9 |
View the top rows of the frame |
|
10 |
View the bottom rows of the frame |
|
11 |
View basic statistical details |
|
12 |
Convert the pandas DataFrame to numpy Array |
|
13 |
Convert the pandas Series to numpy Array |
|
14 |
()Convert series or dataframe object to Numpy-array using .as_matrix |
|
15 |
Dealing with Rows and Columns in Pandas DataFrame |
|
16 |
How to select multiple columns in a pandas dataframe |
|
17 |
[ ]Python → Pandas Extracting rows using .loc |
|
18 |
[ ]Python → Extracting rows using Pandas .iloc |
|
19 |
Indexing and Selecting Data with Pandas |
|
20 |
Boolean Indexing in Pandas |
|
21 |
[ ]Label and Integer based slicing technique using DataFrame.ix |
|
22 |
Adding new column to existing DataFrame in Pandas |
|
23 |
Python → Delete rows/columns from DataFrame |
|
24 |
Truncate a DataFrame before and after some index value |
|
25 |
Truncate a Series before and after some index value |
|
26 |
Iterating over rows and columns in Pandas DataFrame |
|
27 |
Working with Missing Data in Pandas |
|
28 |
Sorts a data frame in Pandas → Set-1 |
|
29 |
Sorts a data frame in Pandas → Set-2 |
|
30 |
Pandas GroupBy |
|
31 |
Grouping Rows in pandas |
|
32 |
Combining multiple columns in Pandas groupby with dictionary |
|
33 |
Python → Pandas Merging, Joining, and Concatenating |
|
34 |
Concatenate Strings |
|
35 |
Append rows to Dataframe |
|
36 |
Concatenate two or more series |
|
37 |
Append a single or a collection of indices |
|
38 |
Combine two series into one |
|
39 |
Add a row at top in pandas DataFrame |
|
40 |
Join all elements in list present in a series |
|
41 |
Join two text columns into a single column in Pandas |
|
42 |
Python → Working with date and time using Pandas |
|
43 |
Timestamp using Pandas |
|
44 |
Current Time using Pandas |
|
45 |
Convert timestamp to ISO Format |
|
46 |
Get datetime object using Pandas |
|
47 |
Replace the member values of the given Timestamp |
|
48 |
Convert string Date time into Python Date time object using Pandas |
|
49 |
Get a fixed frequency DatetimeIndex using Pandas |
|
50 |
Python → Pandas Working With Text Data |
|
51 |
Convert String into lower, upper or camel case |
|
52 |
Replace Text Value |
|
53 |
()Replace Text Value using series.replace |
|
54 |
Removing Whitespaces |
|
55 |
Move dates forward a given number of valid dates using Pandas |
|
56 |
Read csv using pandas |
|
57 |
Saving a Pandas Dataframe as a CSV |
|
58 |
Loading Excel spreadsheet as pandas DataFrame |
|
59 |
Creating a dataframe using Excel files |
|
60 |
Working with Pandas and XlsxWriter → Set – 1 |
|
61 |
Working with Pandas and XlsxWriter → Set – 2 |
|
62 |
Working with Pandas and XlsxWriter → Set – 3 |
|
63 |
Apply a function on the possible series |
|
64 |
Apply function to every row in a Pandas DataFrame |
|
65 |
Apply a function on each element of the series |
|
66 |
Aggregation data across one or more column |
|
67 |
Mean of the values for the requested axis |
|
68 |
Mean of the underlying data in the Series |
|
69 |
Mean absolute deviation of the values for the requested axis |
|
70 |
Mean absolute deviation of the values for the Series |
|
71 |
Unbiased standard error of the mean |
|
72 |
Find the Series containing counts of unique values |
|
73 |
()Find the Series containing counts of unique values using Index.value_counts |
|
74 |
Pandas Built-in Data Visualization |
|
75 |
Data analysis and Visualization with Python → Set 1 |
|
76 |
Data analysis and Visualization with Python → Set 2 |
|
77 |
Box plot visualization with Pandas and Seaborn |
|
78 |
How to Do a vLookup in Python using pandas |
|
79 |
Convert CSV to HTML Table in Python |
|
80 |
KDE Plot Visualization with Pandas and Seaborn |
|
81 |
Analyzing selling price of used cars using Python |
|
82 |
Add CSS to the Jupyter Notebook using Pandas |
|
زمان تخمینی مورد نیاز برای این دوره: 90 ساعت
|