دوره جامع نرم افزار GAMS

Chapter 1: Introduction to GAMS Software
  • Lesson 1: What is GAMS?
  • Lesson 2: History of GAMS and the Development of Optimization Software
  • Lesson 3: Applications and Use Cases of GAMS in Industries (e.g., Operations Research, Energy, Finance)
  • Lesson 4: Installation and Setting Up GAMS
  • Lesson 5: Introduction to the GAMS IDE (Interface)
  • Lesson 6: Writing Your First GAMS Model
  • Lesson 7: Navigating the GAMS Syntax and Structure
Chapter 2: Basics of GAMS Programming
  • Lesson 1: GAMS Syntax and Keywords
  • Lesson 2: Defining Variables, Equations, and Models in GAMS
  • Lesson 3: Data Input/Output in GAMS
  • Lesson 4: Sets, Parameters, and Variables
  • Lesson 5: Control Statements: Looping and Conditional Logic
  • Lesson 6: Writing GAMS Code for Optimization Problems
  • Lesson 7: Debugging and Error Handling in GAMS
Chapter 3: GAMSl Operations and Optimization
  • Lesson 1: Introduction to Optimization Problems
  • Lesson 2: Solving Linear Programming (LP) Problems in GAMS
  • Lesson 3: Solving Mixed-Integer Programming (MIP) Problems
  • Lesson 4: Introduction to Nonlinear Programming (NLP)
  • Lesson 5: Advanced GAMSl Operations in GAMS
  • Lesson 6: Working with Objective Functions and Constraints
  • Lesson 7: Sensitivity Analysis in GAMS Models
Chapter 4: Advanced Optimization Methods in GAMS
  • Lesson 1: Simplex Method for Linear Programming
  • Lesson 2: Interior-Point Methods for Large-Scale Linear and Nonlinear Optimization
  • Lesson 3: Branch-and-Bound for Mixed-Integer Programming (MIP)
  • Lesson 4: Branch-and-Cut for Solving Integer Programming Problems
  • Lesson 5: Dual Simplex Method for Linear Programming Problems
  • Lesson 6: Cutting Plane Methods for Integer Programming
Chapter 5: Working with Solvers and Algorithms
  • Lesson 1: Introduction to Solvers in GAMS
  • Lesson 2: Gurobi Solver for MILP and MIP Problems
  • Lesson 3: CPLEX Solver and Integration in GAMS
  • Lesson 4: Xpress Solver in GAMS for Optimization
  • Lesson 5: Using CONOPT, BARON, and IPOPT for Nonlinear Problems
  • Lesson 6: Overview of Karmarkar’s Algorithm for Large-Scale LP
Chapter 6: Stochastic and Multi-Objective Optimization
  • Lesson 1: Introduction to Stochastic Programming
  • Lesson 2: Global Optimization in GAMS
  • Lesson 3: Multi-Objective Optimization Methods
  • Lesson 4: Pareto Optimality in GAMS
  • Lesson 5: Genetic Algorithms (GA) in GAMS
  • Lesson 6: Simulated Annealing and Particle Swarm Optimization (PSO)
  • Lesson 7: Ant Colony Optimization (ACO) for Complex Problems
Chapter 7: Parallel Computing and Large-Scale Optimization
  • Lesson 1: Introduction to Parallel Computing in GAMS
  • Lesson 2: GAMS/Cloud and Cloud-Based Optimization
  • Lesson 3: GAMS/MPI for Distributed Computing
  • Lesson 4: Decomposing Large Optimization Problems
  • Lesson 5: Parallel Optimization with Genetic Algorithms
  • Lesson 6: Using Multiple Solvers for Scalability and Performance
Chapter 8: Constraint Programming and Decomposition Methods
  • Lesson 1: Introduction to Constraint Programming in GAMS
  • Lesson 2: Using Global Constraint Propagation to Reduce Search Space
  • Lesson 3: Benders Decomposition for Large-Scale Mixed-Integer Problems
  • Lesson 4: Dantzig-Wolfe Decomposition for Large Linear Problems
  • Lesson 5: Model Decomposition Techniques in GAMS
  • Lesson 6: Incremental Decomposition for Complex Models
Chapter 9: Advanced Optimization Algorithms
  • Lesson 1: Sequential Quadratic Programming (SQP) for Nonlinear Optimization
  • Lesson 2: Newton’s Method for Root-Finding and Optimization
  • Lesson 3: Lagrange Relaxation for Mixed-Integer Optimization
  • Lesson 4: Penalty Methods in GAMS for Constrained Optimization
  • Lesson 5: Differential Evolution (DE) for Continuous Optimization Problems
  • Lesson 6: Convex Optimization and Conic Programming
Chapter 10: Optimization Applications
  • Lesson 1: Applications of Linear and Nonlinear Optimization in Operations Research
  • Lesson 2: Energy and Resource Optimization with GAMS
  • Lesson 3: Financial Modeling and Optimization Techniques
  • Lesson 4: Supply Chain and Logistics Optimization
  • Lesson 5: Model Predictive Control (MPC) in Optimization
  • Lesson 6: Optimization in Manufacturing and Production Scheduling
Chapter 1: Advanced Optimization and Solution Techniques
  • Lesson 1: KKT Conditions for Optimality in Nonlinear Programming
  • Lesson 2: Solving Large-Scale Mixed-Integer Problems Efficiently
  • Lesson 3: Advanced Cutting-Edge Nonlinear Solvers: CONOPT, IPOPT, and BARON
  • Lesson 4: Advanced Parallel Computing Strategies in GAMS
  • Lesson 5: Handling Uncertainty in Optimization Problems
Chapter 2: Advanced Decomposition and Large-Scale Systems
  • Lesson 1: Advanced Techniques for Model Decomposition
  • Lesson 2: DOA (Decomposition Optimization Algorithm) for Large-Scale Optimization
  • Lesson 3: Using Decomposition for Multi-Stage and Multi-Period Optimization Problems
  • Lesson 4: Advanced Benders and Dantzig-Wolfe Decomposition Techniques
Chapter 3: Advanced Algorithms for Optimization
  • Lesson 1: Using Tabu Search for Complex Optimization Problems
  • Lesson 2: Hybrid Algorithms in GAMS for Optimization
  • Lesson 3: Ant Colony Optimization for Nonlinear and Integer Problems
  • Lesson 4: Simulated Annealing for Large and Complex Systems
  • Lesson 5: Global and Local Search Algorithms in Optimization
Chapter 4: Machine Learning Integration with GAMS
  • Lesson 1: Integrating Machine Learning Models with GAMS for Optimization
  • Lesson 2: Feature Selection and Data Preprocessing for Optimization
  • Lesson 3: Optimization Using Genetic Algorithms for Machine Learning
  • Lesson 4: Training Neural Networks for Optimization Problems
Chapter 5: Optimization in Big Data and Cloud Environments
  • Lesson 1: Managing Big Data in Optimization Models
  • Lesson 2: Distributed and Cloud-Based Optimization Techniques
  • Lesson 3: Using GAMS with Hadoop and Spark for Big Data Optimization
  • Lesson 4: Optimizing Real-Time Data Streams and Decision Making
Chapter 6: Simulation and Monte Carlo Optimization
  • Lesson 1: Monte Carlo Simulation in Optimization
  • Lesson 2: Stochastic Optimization in GAMS
  • Lesson 3: Optimization for Uncertainty with GAMS Simulation Tools
Chapter 7: Customizing and Extending GAMS Models
  • Lesson 1: Writing Custom GAMS Functions and Procedures
  • Lesson 2: Creating User-Defined Solvers and Algorithms in GAMS
  • Lesson 3: Integrating GAMS with External Tools and Languages (e.g., Python, R)
  • Lesson 4: Automating Optimization Tasks with GAMS Scripting
Chapter 8: Advanced Solver Configuration and Tuning
  • Lesson 1: Configuring and Tuning Gurobi, CPLEX, and Xpress Solvers
  • Lesson 2: Optimizing Solver Performance and Model Scalability
  • Lesson 3: Advanced Solver Options for Mixed-Integer and Nonlinear Problems
مدت دوره: 100 + 20 ساعت

تمامی کدهای GAMS این دوره و همچنین فایلpdf کامل تدریس دوره در اختیار دانشجویانی که در این دوره ثبت نام نمایند، قرار خواهد گرفت. در پایان دوره، یک پروژه عملی به مدت حدود 20 ساعت با همکاری مدرس و دانشجو انجام خواهد شد، که آمادگی کامل برای ورود به بازار کار را ایجاد نماید.
هزینه هر جلسه 1 ساعته تدریس خصوصی برای دوره فوق، برای 1 نفر معادل 350 هزار تومان و برای 2 نفر، هر نفر 250 هزار تومان و برای 3 نفر، هر نفر 200 هزار تومان می‌باشد.
شماره تماس واتساپ و تلگرام: 09124908372 ، 09354908372

پیام شما



































دوره مقدماتی نرم افزار GAMS


Chapter 1: Introduction to GAMS Software
Chapter 2: Basics of GAMS Programming
Chapter 3: GAMSl Operations and Optimization
Chapter 4: Advanced Optimization Methods in GAMS
Chapter 5: Working with Solvers and Algorithms
Chapter 6: Stochastic and Multi-Objective Optimization
Chapter 7: Parallel Computing and Large-Scale Optimization
Chapter 8: Constraint Programming and Decomposition Methods
Chapter 9: Advanced Optimization Algorithms
Chapter 10: Optimization Applications

دوره پیشرفته نرم افزار GAMS


Chapter 1: Advanced Optimization and Solution Techniques
Chapter 2: Advanced Decomposition and Large-Scale Systems
Chapter 3: Advanced Algorithms for Optimization
Chapter 4: Machine Learning Integration with GAMS
Chapter 5: Optimization in Big Data and Cloud Environments
Chapter 6: Simulation and Monte Carlo Optimization
Chapter 7: Customizing and Extending GAMS Models
Chapter 8: Advanced Solver Configuration and Tuning
مدت دوره: 100 + 20 ساعت

تمامی کدهای GAMS این دوره و همچنین فایلpdf کامل تدریس دوره در اختیار دانشجویانی که در این دوره ثبت نام نمایند، قرار خواهد گرفت. در پایان دوره، یک پروژه عملی به مدت حدود 20 ساعت با همکاری مدرس و دانشجو انجام خواهد شد، که آمادگی کامل برای ورود به بازار کار را ایجاد نماید.
هزینه هر جلسه 1 ساعته تدریس خصوصی برای دوره فوق، برای 1 نفر معادل 350 هزار تومان و برای 2 نفر، هر نفر 250 هزار تومان و برای 3 نفر، هر نفر 200 هزار تومان می‌باشد.
شماره تماس واتساپ و تلگرام: 09124908372 ، 09354908372

پیام شما