دوره جامع نرم افزار Maple

Chapter 1: Introduction to Maple Software
  • Lesson 1: What is Maple Software?
  • Lesson 2: History of Maple and Maplesoft
  • Lesson 3: Applications and Use Cases of Maple
  • Lesson 4: Installation and Setting Up Maple Software
  • Lesson 5: Overview of the Maple Interface
  • Lesson 6: Writing Your First Maple Code
  • Lesson 7: Introduction to the Maple Programming Language
Chapter 2: Basics of Maple Programming
  • Lesson 1: Syntax, Expressions, and Tokens in Maple
  • Lesson 2: Working with Variables and Constants
  • Lesson 3: Common Data Types: Numbers, Strings, Lists, and Tables
  • Lesson 4: Basic Maplel Operations in Maple
  • Lesson 5: Creating and Using Procedures (Functions)
  • Lesson 6: Introduction to Maple’s Help System and Documentation
  • Lesson 7: Debugging Your First Maple Script
Chapter 3: Maplel Computation and Visualizations
  • Lesson 1: Arithmetic Operations and Elementary Functions
  • Lesson 2: Advanced Calculus Operations: Differentiation, Integration, and Limits
  • Lesson 3: Linear Algebra Operations: Matrices, Determinants, and Eigenvalues
  • Lesson 4: Solving Equations and Systems of Equations
  • Lesson 5: Creating 2D Plots and Graphs in Maple
  • Lesson 6: Generating 3D Plots and Surface Visualizations
  • Lesson 7: Enhancing Visualizations with Annotations and Colors
Chapter 4: Data Structures and Functional Programming
  • Lesson 1: Understanding Lists, Arrays, and Sequences
  • Lesson 2: Manipulating Data Structures in Maple
  • Lesson 3: Functional Programming Basics: Map, Fold, and Apply
  • Lesson 4: Creating Nested Data Structures
  • Lesson 5: Working with DataFrames and Statistical Data
  • Lesson 6: Data Cleaning and Transformation
Chapter 5: Control Structures in Maple
  • Lesson 1: Conditional Statements: If and Else
  • Lesson 2: Iterative Constructs: For, While, and Do Loops
  • Lesson 3: Recursion and Recursive Algorithms
  • Lesson 4: Error Handling and Debugging in Maple
  • Lesson 5: Writing Efficient and Modular Code
Chapter 6: String Manipulation
  • Lesson 1: Working with Strings in Maple
  • Lesson 2: String Pattern Matching and Substitution
  • Lesson 3: Advanced String Formatting Techniques
  • Lesson 4: Regular Expressions in Maple
  • Lesson 5: Processing and Analyzing Text Data
Chapter 7: Importing, Exporting and Managing Data
  • Lesson 1: Supported File Formats in Maple
  • Lesson 2: Importing and Exporting Data: CSV, JSON, and Excel
  • Lesson 3: Using Maple for Web Scraping and APIs
  • Lesson 4: Handling Large Data Sets in Maple
  • Lesson 5: Optimizing Data Processing and Memory Usage
Chapter 8: Built-In Functions and Libraries
  • Lesson 1: Overview of Maple's Built-In Functions
  • Lesson 2: Exploring Maple’s Specialized Libraries
  • Lesson 3: Symbolic Computation in Maple
  • Lesson 4: Leveraging External Packages and Add-Ons
Chapter 9: Introduction to Dynamic Content
  • Lesson 1: Creating Dynamic Plots and Animations
  • Lesson 2: Interactivity with Maple's Explore Functionality
  • Lesson 3: Building Custom Widgets and Applications
  • Lesson 4: Enhancing User Interaction with Maple Worksheets
Chapter 10: Differential Equations in Maple
  • Lesson 1: Solving Ordinary Differential Equations (ODEs) Symbolically
  • Lesson 2: Numerical Solutions to ODEs
  • Lesson 3: Working with Partial Differential Equations (PDEs)
  • Lesson 4: Applications of ODEs and PDEs in Real-World Problems
  • Lesson 5: Visualizing Solutions to Differential Equations
Chapter 1: Advanced Visualization Techniques
  • Lesson 1: High-Quality 2D and 3D Plots
  • Lesson 2: Advanced Graphics Customization
  • Lesson 3: Animations and Interactive Visualizations
  • Lesson 4: Visualizing Complex Data Structures
Chapter 2: Symbolic and Numeric Computation
  • Lesson 1: Symbolic Algebra in Maple
  • Lesson 2: Precision Control in Numeric Computation
  • Lesson 3: Hybrid Symbolic-Numeric Techniques
  • Lesson 4: Handling Ill-Conditioned Problems
Chapter 3: Advanced Linear Algebra with Maple
  • Lesson 1: Introduction to Advanced Linear Algebra Concepts
  • Lesson 2: Review of Fundamental Linear Algebra in Maple
  • Lesson 3: Vector Spaces and Subspaces
  • Lesson 4: Inner Product Spaces and Orthogonality
  • Lesson 5: Matrix Operations and Inversion Techniques
  • Lesson 6: Determinants and Their Properties
  • Lesson 7: Eigenvalues and Eigenvectors Analysis
  • Lesson 8: Diagonalization and Spectral Decomposition
  • Lesson 9: Jordan Canonical Form and Applications
  • Lesson 10: Singular Value Decomposition (SVD)
  • Lesson 11: Advanced Matrix Factorization Methods
  • Lesson 12: Tensor Operations and Multilinear Algebra
  • Lesson 13: Sparse Matrices and Numerical Techniques
  • Lesson 14: Applications of Advanced Linear Algebra in Maple
  • Lesson 15: Case Studies and Complex Problem Solving
Chapter 4: Advanced Statistical Analysis with Maple
  • Lesson 1: Overview of Advanced Statistical Methods
  • Lesson 2: Multivariate Analysis Techniques
  • Lesson 3: Probability Distributions and Inference
  • Lesson 4: Regression Analysis and Model Fitting
  • Lesson 5: Hypothesis Testing and Confidence Intervals
  • Lesson 6: Bayesian Statistical Methods
  • Lesson 7: Monte Carlo Simulation Techniques
  • Lesson 8: Nonparametric Statistical Analysis
  • Lesson 9: Time Series Statistical Methods
  • Lesson 10: Advanced Data Visualization for Statistics
Chapter 5: Machine Learning with Maple
  • Lesson 1: Introduction to Machine Learning in Maple
  • Lesson 2: Data Preprocessing and Feature Engineering
  • Lesson 3: Supervised Learning Algorithms
  • Lesson 4: Unsupervised Learning Techniques
  • Lesson 5: Model Training and Evaluation
  • Lesson 6: Decision Trees and Ensemble Methods
  • Lesson 7: Clustering and Dimensionality Reduction
  • Lesson 8: Support Vector Machines in Maple
  • Lesson 9: Model Optimization and Tuning
  • Lesson 10: Real-World Machine Learning Applications
Chapter 6: Neural Networks and Deep Learning with Maple
  • Lesson 1: Introduction to Neural Networks in Maple
  • Lesson 2: Building Feedforward Neural Networks
  • Lesson 3: Training and Backpropagation Techniques
  • Lesson 4: Convolutional Neural Networks (CNNs)
  • Lesson 5: Recurrent Neural Networks (RNNs)
  • Lesson 6: Autoencoders and Feature Extraction
  • Lesson 7: Transfer Learning in Maple
  • Lesson 8: Hyperparameter Optimization Strategies
  • Lesson 9: Deep Learning for Image and Signal Processing
  • Lesson 10: Case Studies in Deep Learning
Chapter 7: Time Series Analysis with Maple
  • Lesson 1: Fundamentals of Time Series Analysis
  • Lesson 2: Time Series Data Preprocessing
  • Lesson 3: Trend and Seasonality Detection
  • Lesson 4: ARIMA and Exponential Smoothing Models
  • Lesson 5: Forecasting Techniques in Maple
  • Lesson 6: Anomaly Detection in Time Series
  • Lesson 7: Multivariate Time Series Analysis
  • Lesson 8: Frequency Domain Analysis and FFT
  • Lesson 9: Time Series Clustering and Classification
  • Lesson 10: Applications of Time Series Forecasting
Chapter 8: Image and Signal Processing with Maple
  • Lesson 1: Introduction to Image Processing in Maple
  • Lesson 2: Image Filtering and Enhancement Techniques
  • Lesson 3: Edge Detection and Feature Extraction
  • Lesson 4: Fourier Transform and Frequency Analysis
  • Lesson 5: Signal Filtering and Noise Reduction
  • Lesson 6: Image Segmentation Techniques
  • Lesson 7: Morphological Operations in Image Processing
  • Lesson 8: Signal Analysis and Time-Frequency Representations
  • Lesson 9: Multidimensional Image Processing
  • Lesson 10: Applications in Engineering and Medical Imaging
Chapter 9: Computer Vision with Maple
  • Lesson 1: Introduction to Computer Vision Concepts
  • Lesson 2: Image Acquisition and Preprocessing
  • Lesson 3: Feature Detection and Extraction
  • Lesson 4: Object Recognition and Classification
  • Lesson 5: Motion Detection and Tracking
  • Lesson 6: 3D Reconstruction Techniques
  • Lesson 7: Deep Learning for Computer Vision
  • Lesson 8: Real-Time Video Processing
  • Lesson 9: Pattern Recognition Methods
  • Lesson 10: Applications in Robotics and Surveillance
Chapter 10: Natural Language Processing with Maple
  • Lesson 1: Introduction to NLP in Maple
  • Lesson 2: Text Preprocessing and Tokenization
  • Lesson 3: Part-of-Speech Tagging and Parsing
  • Lesson 4: Sentiment Analysis Techniques
  • Lesson 5: Named Entity Recognition
  • Lesson 6: Word Embeddings and Vector Representations
  • Lesson 7: Topic Modeling and Latent Semantic Analysis
  • Lesson 8: Text Classification and Clustering
  • Lesson 9: Language Modeling and Generation
  • Lesson 10: Applications of NLP in Data Analysis
Chapter 11: Genetic Algorithm with Maple
  • Lesson 1: Introduction to Genetic Algorithms in Maple
  • Lesson 2: Chromosome Encoding and Representation
  • Lesson 3: Designing Fitness Functions
  • Lesson 4: Selection Methods and Strategies
  • Lesson 5: Crossover Techniques and Recombination
  • Lesson 6: Mutation Operators and Diversity Maintenance
  • Lesson 7: Convergence Criteria and Termination
  • Lesson 8: Parameter Tuning and Optimization
  • Lesson 9: Hybrid Approaches in Genetic Algorithms
  • Lesson 10: Real-World Applications of Genetic Algorithms
Chapter 12: Optimization and Constrained Problems with Maple
  • Lesson 1: Overview of Optimization Techniques in Maple
  • Lesson 2: Unconstrained Optimization Methods
  • Lesson 3: Fundamentals of Constrained Optimization
  • Lesson 4: Linear Programming in Maple
  • Lesson 5: Nonlinear Optimization Techniques
  • Lesson 6: Quadratic and Convex Optimization
  • Lesson 7: Global Optimization Strategies
  • Lesson 8: Sensitivity Analysis and Robust Optimization
  • Lesson 9: Optimization in Engineering Applications
  • Lesson 10: Advanced Topics in Optimization Algorithms
Chapter 13: Analyzing and Visualizing Big Data with Maple
  • Lesson 1: Introduction to Big Data Concepts in Maple
  • Lesson 2: Data Import and Preprocessing Strategies
  • Lesson 3: Distributed Computing Techniques
  • Lesson 4: Data Cleaning and Transformation
  • Lesson 5: Statistical Analysis of Large Datasets
  • Lesson 6: Machine Learning Applications for Big Data
  • Lesson 7: Advanced Data Visualization Techniques
  • Lesson 8: Real-Time Data Processing and Streaming
  • Lesson 9: Integration with Big Data Platforms
  • Lesson 10: Case Studies in Big Data Analytics
Chapter 14: Quantum Computing with Maple
  • Lesson 1: Introduction to Quantum Computing Concepts
  • Lesson 2: Quantum Mechanics Fundamentals for Computing
  • Lesson 3: Qubits and Quantum States in Maple
  • Lesson 4: Quantum Gates and Circuit Design
  • Lesson 5: Quantum Algorithms and Their Complexity
  • Lesson 6: Simulation of Quantum Systems
  • Lesson 7: Quantum Error Correction Techniques
  • Lesson 8: Quantum Cryptography in Maple
  • Lesson 9: Hybrid Classical-Quantum Approaches
  • Lesson 10: Applications of Quantum Computing
Chapter 15: Riemannian Geometry with Maple
  • Lesson 1: Fundamentals of Riemannian Geometry
  • Lesson 2: Manifolds and Metric Tensors
  • Lesson 3: Geodesics and Curvature
  • Lesson 4: Connections and Parallel Transport
  • Lesson 5: Ricci and Scalar Curvature
  • Lesson 6: Applications in General Relativity
  • Lesson 7: Differential Forms in Geometry
  • Lesson 8: Theorems of Riemannian Manifolds
  • Lesson 9: Computational Techniques in Maple
  • Lesson 10: Advanced Topics in Riemannian Geometry
Chapter 16: Finsler Geometry with Maple
  • Lesson 1: Introduction to Finsler Geometry
  • Lesson 2: Finsler Metrics and Their Properties
  • Lesson 3: Geodesics in Finsler Spaces
  • Lesson 4: Curvature in Finsler Geometry
  • Lesson 5: Comparing Finsler and Riemannian Geometry
  • Lesson 6: Finslerian Models in Physics
  • Lesson 7: Computational Methods in Finsler Geometry
  • Lesson 8: Applications and Case Studies
  • Lesson 9: Advanced Concepts in Finsler Spaces
  • Lesson 10: Recent Developments in Finsler Geometry
Chapter 17: Complex Functions with Maple
  • Lesson 1: Basics of Complex Analysis in Maple
  • Lesson 2: Complex Differentiation and Integration
  • Lesson 3: Analytic Functions and Conformal Mappings
  • Lesson 4: Residue Theory and Contour Integration
  • Lesson 5: Power Series and Laurent Series
  • Lesson 6: Mapping Properties of Complex Functions
  • Lesson 7: Multivalued Functions and Branch Cuts
  • Lesson 8: Riemann Surfaces and Complex Manifolds
  • Lesson 9: Computational Techniques in Complex Analysis
  • Lesson 10: Applications in Physics and Engineering
Chapter 18: Coding Theory with Maple
  • Lesson 1: Introduction to Coding Theory in Maple
  • Lesson 2: Error-Detecting and Error-Correcting Codes
  • Lesson 3: Linear Codes and Their Properties
  • Lesson 4: Cyclic and Convolutional Codes
  • Lesson 5: Reed-Solomon and BCH Codes
  • Lesson 6: Code Construction and Decoding Algorithms
  • Lesson 7: Information Theory Fundamentals
  • Lesson 8: Advanced Coding Techniques
  • Lesson 9: Applications of Coding Theory
  • Lesson 10: Case Studies in Coding Theory
Chapter 19: Extending Maple with External Tools
  • Lesson 1: Integration with Python, MATLAB, and R
  • Lesson 2: Maple for Cloud and Distributed Computing
  • Lesson 3: Custom Extensions with Maple Programming
مدت دوره: 100 + 20 ساعت

تمامی کدهای Maple این دوره و همچنین فایلpdf کامل تدریس دوره در اختیار دانشجویانی که در این دوره ثبت نام نمایند، قرار خواهد گرفت. در پایان دوره، یک پروژه عملی به مدت حدود 20 ساعت با همکاری مدرس و دانشجو انجام خواهد شد، که آمادگی کامل برای ورود به بازار کار را ایجاد نماید.
هزینه هر جلسه 1 ساعته تدریس خصوصی برای دوره فوق، برای 1 نفر معادل 350 هزار تومان و برای 2 نفر، هر نفر 250 هزار تومان و برای 3 نفر، هر نفر 200 هزار تومان می‌باشد.
شماره تماس واتساپ و تلگرام: 09124908372 ، 09354908372

پیام شما





















دوره مقدماتی نرم افزار Maple


Chapter 1: Introduction to Maple Software
Chapter 2: Basics of Maple Programming
Chapter 3: Maplel Computation and Visualizations
Chapter 4: Data Structures and Functional Programming
Chapter 5: Control Structures in Maple
Chapter 6: String Manipulation
Chapter 7: Importing, Exporting and Managing Data
Chapter 8: Built-In Functions and Libraries
Chapter 9: Introduction to Dynamic Content
Chapter 10: Differential Equations in Maple

دوره پیشرفته نرم افزار Maple


Chapter 1: Advanced Visualization Techniques
Chapter 2: Symbolic and Numeric Computation
Chapter 3: Advanced Linear Algebra with Maple
Chapter 4: Advanced Statistical Analysis with Maple
Chapter 5: Machine Learning with Maple
Chapter 6: Neural Networks and Deep Learning with Maple
Chapter 7: Time Series Analysis with Maple
Chapter 8: Image and Signal Processing with Maple
Chapter 9: Computer Vision with Maple
Chapter 10: Natural Language Processing with Maple
Chapter 11: Genetic Algorithm with Maple
Chapter 12: Optimization and Constrained Problems with Maple
Chapter 13: Analyzing and Visualizing Big Data with Maple
Chapter 14: Quantum Computing with Maple
Chapter 15: Riemannian Geometry with Maple
Chapter 16: Finsler Geometry with Maple
Chapter 17: Complex Functions with Maple
Chapter 18: Coding Theory with Maple
Chapter 19: Extending Maple with External Tools
مدت دوره: 100 + 20 ساعت

تمامی کدهای Maple این دوره و همچنین فایلpdf کامل تدریس دوره در اختیار دانشجویانی که در این دوره ثبت نام نمایند، قرار خواهد گرفت. در پایان دوره، یک پروژه عملی به مدت حدود 20 ساعت با همکاری مدرس و دانشجو انجام خواهد شد، که آمادگی کامل برای ورود به بازار کار را ایجاد نماید.
هزینه هر جلسه 1 ساعته تدریس خصوصی برای دوره فوق، برای 1 نفر معادل 350 هزار تومان و برای 2 نفر، هر نفر 250 هزار تومان و برای 3 نفر، هر نفر 200 هزار تومان می‌باشد.
شماره تماس واتساپ و تلگرام: 09124908372 ، 09354908372

پیام شما