دوره جامع نرم افزار Mathematica

Chapter 1: Introduction to Mathematica Software
  • Lesson 1: What is Mathematica?
  • Lesson 2: History of Mathematica and Wolfram Research
  • Lesson 3: Applications and Use Cases of Mathematica
  • Lesson 4: Installation and Setting Up Mathematica
  • Lesson 5: Introduction to the Mathematica Notebook Interface
  • Lesson 6: Writing Your First Mathematica Code
  • Lesson 7: Navigating the Wolfram Language
Chapter 2: Basics of Mathematica Programming
  • Lesson 1: Introduction to the Wolfram Language
  • Lesson 2: Syntax, Expressions, and Tokens
  • Lesson 3: Working with Variables and Assignments
  • Lesson 4: Common Data Types: Numbers, Strings, Lists, and Associations
  • Lesson 5: Symbolic Computation Basics
  • Lesson 6: Defining Functions and Rules
  • Lesson 7: Using Mathematica's Auto-Completion and Suggestions
Chapter 3: Mathematical Operations and Visualizations
  • Lesson 1: Basic Arithmetic and Mathematical Functions
  • Lesson 2: Advanced Mathematical Operations: Integrals, Derivatives, and Limits
  • Lesson 3: Linear Algebra: Matrices, Vectors, and Determinants
  • Lesson 4: Statistical Functions and Data Analysis Basics
  • Lesson 5: Plotting 2D Graphs: Functions, Points, and Annotations
  • Lesson 6: Visualizing 3D Data and Surfaces
  • Lesson 7: Interactive Graphs and Manipulate Function
Chapter 4: Working with Lists and Data Structures
  • Lesson 1: Introduction to Lists in Mathematica
  • Lesson 2: List Manipulation and Functional Programming
  • Lesson 3: Nested Lists and Matrices
  • Lesson 4: Associations and Key-Value Pair Operations
  • Lesson 5: Data Cleaning and Transformation in Mathematica
  • Lesson 6: Sorting, Filtering, and Aggregating Data
Chapter 5: Control Structures
  • Lesson 1: Conditional Statements: If, Which, and Conditional Rules
  • Lesson 2: Loops: For, While, and Do
  • Lesson 3: Functional Programming: Map, Apply, Fold, and More
  • Lesson 4: Recursion in Mathematica
  • Lesson 5: Best Practices for Control Structures
Chapter 6: Working with Strings
  • Lesson 1: Introduction to String Operations
  • Lesson 2: String Manipulation and Pattern Matching
  • Lesson 3: Regular Expressions in Mathematica
  • Lesson 4: Formatting Strings and Template Expressions
  • Lesson 5: String Interpolation and Advanced Formatting
Chapter 7: Importing, Exporting, and Managing Data
  • Lesson 1: Supported Data Formats for Import and Export
  • Lesson 2: Importing CSV, JSON, and XML Files
  • Lesson 3: Exporting Graphics, Tables, and Notebooks
  • Lesson 4: Data Import from APIs and the Web
  • Lesson 5: Handling Large Datasets and Memory Optimization
Chapter 8: Built-In Mathematica Functions and Packages
  • Lesson 1: Overview of Commonly Used Mathematica Functions
  • Lesson 2: Exploring Built-In Packages and Libraries
  • Lesson 3: Using Wolfram Alpha Integration in Mathematica
  • Lesson 4: Leveraging Cloud-Based Resources
Chapter 9: Debugging and Optimization
  • Lesson 1: Debugging Mathematica Code
  • Lesson 2: Performance Profiling and Optimization Techniques
  • Lesson 3: Managing Errors and Exception Handling
  • Lesson 4: Optimizing Notebook Organization
Chapter 10: Introduction to Dynamic Content and User Interaction
  • Lesson 1: Creating Dynamic Interfaces with Manipulate
  • Lesson 2: Building Custom Widgets and Controls
  • Lesson 3: Adding Interactivity to Graphs and Visualizations
  • Lesson 4: Designing Dynamic Applications
Chapter 11: Solving Ordinary Differential Equations with Mathematica
  • Lesson 1: Introduction to Ordinary Differential Equations (ODEs) in Mathematica
  • Lesson 2: Using DSolve for Solving ODEs Symbolically
  • Lesson 3: Numerical Solutions with NDSolve
  • Lesson 4: Initial Value Problems (IVPs) and Boundary Value Problems (BVPs)
  • Lesson 5: Solving Systems of ODEs
  • Lesson 6: Visualizing ODE Solutions with Plots
  • Lesson 7: Applications of ODEs in Real-World Scenarios
  • Lesson 8: Advanced ODE Techniques and Mathematica Functions
Chapter 12: Solving Partial Differential Equations (PDEs) with Mathematica
  • Lesson 1: Introduction to Partial Differential Equations (PDEs)
  • Lesson 2: Using DSolve for Solving PDEs Symbolically
  • Lesson 3: Numerical Solutions with NDSolve for PDEs
  • Lesson 4: Boundary and Initial Conditions for PDEs
  • Lesson 5: Separation of Variables Method in PDEs
  • Lesson 6: Solving Heat, Wave, and Laplace Equations
  • Lesson 7: Visualizing PDE Solutions
  • Lesson 8: Applications of PDEs in Physics and Engineering
  • Lesson 9: Advanced Techniques for Solving PDEs in Mathematica
Chapter 1: Advanced Visualization Techniques
  • Lesson 1: Creating High-Quality 2D and 3D Plots
  • Lesson 2: Volume and Surface Visualizations
  • Lesson 3: Advanced Graphics Customization
  • Lesson 4: Using Mathematica for Animations
Chapter 2: Advanced Linear Algebra with Mathematica
  • Lesson 1: Vector Spaces and Subspaces
  • Lesson 2: Linear Transformations and Matrices
  • Lesson 3: Eigenvalues and Eigenvectors
  • Lesson 4: Diagonalization of Matrices
  • Lesson 5: Singular Value Decomposition (SVD)
  • Lesson 6: Orthogonal Projections and QR Decomposition
  • Lesson 7: Least Squares Problems and Applications
  • Lesson 8: Jordan Normal Form
  • Lesson 9: Positive Definite Matrices and Cholesky Decomposition
  • Lesson 10: Tensor Operations and Multilinear Algebra
Chapter 3: Advanced Statistical Analysis
  • Lesson 1: Introduction to Advanced Statistical Methods
  • Lesson 2: Multivariate Analysis
  • Lesson 3: Hypothesis Testing and Confidence Intervals
  • Lesson 4: Bayesian Inference in Mathematica
  • Lesson 5: Principal Component Analysis (PCA)
  • Lesson 6: Cluster Analysis and Classification
  • Lesson 7: Regression Analysis and Model Fitting
  • Lesson 8: Advanced Statistical Modeling Techniques
Chapter 4: Machine Learning with Mathematica
  • Lesson 1: Introduction to Machine Learning Concepts
  • Lesson 2: Supervised Learning Algorithms in Mathematica
  • Lesson 3: Unsupervised Learning Algorithms in Mathematica
  • Lesson 4: Feature Selection and Engineering
  • Lesson 5: Model Evaluation and Tuning
  • Lesson 6: Support Vector Machines (SVM)
  • Lesson 7: Ensemble Methods and Random Forests
  • Lesson 8: Reinforcement Learning with Mathematica
Chapter 5: Neural Networks and Deep Learning with Mathematica
  • Lesson 1: Introduction to Neural Networks in Mathematica
  • Lesson 2: Building Feedforward Neural Networks
  • Lesson 3: Training Neural Networks with Mathematica
  • Lesson 4: Transfer Learning with Pre-Trained Models
  • Lesson 5: Generative Adversarial Networks (GANs)
  • Lesson 6: Autoencoders and Dimensionality Reduction
  • Lesson 7: Neural Network Deployment and Integration
  • Lesson 8: Deep Reinforcement Learning with Neural Networks
  • Lesson 9: Hyperparameter Tuning and Optimization
  • Lesson 10: Visualizing Neural Network Training and Performance
  • Lesson 11: Applications of Neural Networks in Scientific Research
  • Lesson 12: Ethical Considerations in Deep Learning Models
Chapter 6: Time Series Analysis
  • Lesson 1: Introduction to Time Series Data
  • Lesson 2: Time Series Decomposition
  • Lesson 3: Forecasting with ARIMA Models
  • Lesson 4: Exponential Smoothing Methods
  • Lesson 5: Seasonal Adjustment in Time Series
  • Lesson 6: Cross-Correlation and Lagged Variables
  • Lesson 7: Time Series Forecasting with Machine Learning
  • Lesson 8: Visualization of Time Series Data
Chapter 7: Image and Signal Processing
  • Lesson 1: Introduction to Image Processing
  • Lesson 2: Image Enhancement and Filtering
  • Lesson 3: Edge Detection and Image Segmentation
  • Lesson 4: Fourier Transform and Signal Analysis
  • Lesson 5: Signal Denoising and Compression
  • Lesson 6: Working with 2D and 3D Images in Mathematica
  • Lesson 7: Signal Processing for Audio and Speech
  • Lesson 8: Machine Learning for Image and Signal Processing
Chapter 8: Computer Vision with Mathematica
  • Lesson 1: Introduction to Computer Vision Concepts
  • Lesson 2: Working with Images and Video in Mathematica
  • Lesson 3: Image Preprocessing Techniques
  • Lesson 4: Edge Detection and Object Recognition
  • Lesson 5: Image Segmentation and Feature Extraction
  • Lesson 6: Object Tracking and Motion Detection
  • Lesson 7: Deep Learning for Image Classification
  • Lesson 8: Convolutional Neural Networks (CNNs) for Image Recognition
  • Lesson 9: 3D Image Processing and Reconstruction
  • Lesson 10: Applications of Computer Vision in Mathematica
Chapter 9: Natural Language Processing with Mathematica
  • Lesson 1: Introduction to Natural Language Processing (NLP)
  • Lesson 2: Text Preprocessing and Tokenization
  • Lesson 3: Part-of-Speech Tagging and Named Entity Recognition
  • Lesson 4: Sentiment Analysis and Text Classification
  • Lesson 5: Word Embeddings and Word2Vec
  • Lesson 6: Text Generation with Recurrent Neural Networks (RNNs)
  • Lesson 7: Topic Modeling and Latent Dirichlet Allocation (LDA)
  • Lesson 8: Language Modeling with Transformers (BERT, GPT)
  • Lesson 9: Machine Translation and Multilingual NLP
  • Lesson 10: Speech Recognition and Text-to-Speech Systems
Chapter 10: Genetic Algorithm with Mathematica
  • Lesson 1: Introduction to Genetic Algorithms
  • Lesson 2: Representation of Individuals and Chromosomes
  • Lesson 3: Selection Mechanisms in Genetic Algorithms
  • Lesson 4: Crossover and Mutation Operators
  • Lesson 5: Fitness Function Design
  • Lesson 6: Genetic Algorithm Flow and Termination Criteria
  • Lesson 7: Implementing Genetic Algorithms in Mathematica
  • Lesson 8: Parallel and Distributed Genetic Algorithms
  • Lesson 9: Hybrid Approaches with Genetic Algorithms
  • Lesson 10: Applications of Genetic Algorithms in Optimization Problems
Chapter 11: Optimization and Constrained Problems with Mathematica
  • Lesson 1: Introduction to Optimization Techniques
  • Lesson 2: Unconstrained Optimization Methods
  • Lesson 3: Constrained Optimization Overview
  • Lesson 4: Linear Programming in Mathematica
  • Lesson 5: Quadratic Programming and Convex Optimization
  • Lesson 6: Nonlinear Constrained Optimization
  • Lesson 7: Global Optimization Methods
  • Lesson 8: Gradient-Based Optimization Algorithms
  • Lesson 9: Genetic Algorithms for Optimization
  • Lesson 10: Solving Multi-Objective Optimization Problems
  • Lesson 11: Applications of Optimization in Engineering and Economics
  • Lesson 12: Sensitivity Analysis and Robust Optimization
Chapter 12: Analyzing and Visualizing Big Data
  • Lesson 1: Introduction to Big Data Concepts
  • Lesson 2: Data Import and Export Techniques for Big Data
  • Lesson 3: Data Preprocessing and Cleaning for Big Data
  • Lesson 4: Distributed Computing and Parallel Processing
  • Lesson 5: Visualizing Large Datasets in Mathematica
  • Lesson 6: Big Data Analytics with Machine Learning
  • Lesson 7: Handling Streaming Data
  • Lesson 8: Integrating Mathematica with Big Data Platforms (e.g., Hadoop, Spark)
Chapter 13: Symbolic and Numeric Computation
  • Lesson 1: Advanced Symbolic Computations
  • Lesson 2: Numerical Precision and Accuracy
  • Lesson 3: Solving Complex Systems of Equations
Chapter 14: Programming Paradigms in Mathematica
  • Lesson 1: Procedural and Object-Oriented Programming in Mathematica
  • Lesson 2: Parallel Computing and Multithreading
  • Lesson 3: Functional Programming Techniques
  • Lesson 4: Exploring Meta-Programming in Mathematica
Chapter 15: Networking and Cloud Integration
  • Lesson 1: Networking Basics with Mathematica
  • Lesson 2: Accessing Web Services and APIs
  • Lesson 3: Cloud Deployment and Wolfram Cloud Integration
  • Lesson 4: Sharing and Collaborating on Notebooks
Chapter 16: Customization and Automation
  • Lesson 1: Customizing the Mathematica Environment
  • Lesson 2: Automating Repetitive Tasks with Scripts
  • Lesson 3: Using Mathematica with External Tools and Languages
Chapter 17: Modern Features in Mathematica
  • Lesson 1: Overview of New Features in Recent Releases
  • Lesson 2: Advanced Symbolic AI and NLP Capabilities
  • Lesson 3: Graph and Network Analysis Enhancements
  • Lesson 4: Modern Visualization and Graphics Updates
Chapter 18: Creating Packages and Extensions
  • Lesson 1: Creating and Managing Custom Packages
  • Lesson 2: Using Mathematica in Research and Academic Publishing
  • Lesson 3: Deploying Applications as Standalone Tools
مدت دوره: 100 + 20 ساعت

تمامی کدهای Mathematica این دوره و همچنین فایلpdf کامل تدریس دوره در اختیار دانشجویانی که در این دوره ثبت نام نمایند، قرار خواهد گرفت. در پایان دوره، یک پروژه عملی به مدت حدود 20 ساعت با همکاری مدرس و دانشجو انجام خواهد شد، که آمادگی کامل برای ورود به بازار کار را ایجاد نماید.
هزینه هر جلسه 1 ساعته تدریس خصوصی برای دوره فوق، برای 1 نفر معادل 350 هزار تومان و برای 2 نفر، هر نفر 250 هزار تومان و برای 3 نفر، هر نفر 200 هزار تومان می‌باشد.
شماره تماس واتساپ و تلگرام: 09124908372 ، 09354908372

پیام شما





















دوره مقدماتی نرم افزار Mathematica


Chapter 1: Introduction to Mathematica Software
Chapter 2: Basics of Mathematica Programming
Chapter 3: Mathematical Operations and Visualizations
Chapter 4: Working with Lists and Data Structures
Chapter 5: Control Structures
Chapter 6: Working with Strings
Chapter 7: Importing, Exporting, and Managing Data
Chapter 8: Built-In Mathematica Functions and Packages
Chapter 9: Debugging and Optimization
Chapter 10: Introduction to Dynamic Content and User Interaction
Chapter 11: Solving Ordinary Differential Equations with Mathematica
Chapter 12: Solving Partial Differential Equations (PDEs) with Mathematica

دوره پیشرفته نرم افزار Mathematica


Chapter 1: Advanced Visualization Techniques
Chapter 2: Advanced Linear Algebra with Mathematica
Chapter 3: Advanced Statistical Analysis
Chapter 4: Machine Learning with Mathematica
Chapter 5: Neural Networks and Deep Learning with Mathematica
Chapter 6: Time Series Analysis
Chapter 7: Image and Signal Processing
Chapter 8: Computer Vision with Mathematica
Chapter 9: Natural Language Processing with Mathematica
Chapter 10: Genetic Algorithm with Mathematica
Chapter 11: Optimization and Constrained Problems with Mathematica
Chapter 12: Analyzing and Visualizing Big Data
Chapter 13: Symbolic and Numeric Computation
Chapter 14: Programming Paradigms in Mathematica
Chapter 15: Networking and Cloud Integration
Chapter 16: Customization and Automation
Chapter 17: Modern Features in Mathematica
Chapter 18: Creating Packages and Extensions
مدت دوره: 100 + 20 ساعت

تمامی کدهای Mathematica این دوره و همچنین فایلpdf کامل تدریس دوره در اختیار دانشجویانی که در این دوره ثبت نام نمایند، قرار خواهد گرفت. در پایان دوره، یک پروژه عملی به مدت حدود 20 ساعت با همکاری مدرس و دانشجو انجام خواهد شد، که آمادگی کامل برای ورود به بازار کار را ایجاد نماید.
هزینه هر جلسه 1 ساعته تدریس خصوصی برای دوره فوق، برای 1 نفر معادل 350 هزار تومان و برای 2 نفر، هر نفر 250 هزار تومان و برای 3 نفر، هر نفر 200 هزار تومان می‌باشد.
شماره تماس واتساپ و تلگرام: 09124908372 ، 09354908372

پیام شما