دوره جامع برنامه نویسی R

Chapter 1: Introduction to R
  • Lesson 1: What is R?
  • Lesson 2: History of R and its Ecosystem
  • Lesson 3: Applications and Use Cases of R
  • Lesson 4: Setting Up the R Environment (RStudio)
  • Lesson 5: Writing Your First R Script
  • Lesson 6: Introduction to R Syntax
  • Lesson 7: Working with R Packages
Chapter 2: Variables, Data Types, and Structures
  • Lesson 1: What are Variables in R?
  • Lesson 2: Declaring and Initializing Variables
  • Lesson 3: Data Types: Numeric, Character, Logical, Factor, etc.
  • Lesson 4: Special Values: NA, NULL, NaN, and Inf
  • Lesson 5: Type Coercion and Checking Data Types
Chapter 3: Vectors in R
  • Lesson 1: Creating Vectors
  • Lesson 2: Vector Operations (Arithmetic, Logical)
  • Lesson 3: Common Vector Functions (length, sum, mean)
  • Lesson 4: Subsetting Vectors
  • Lesson 5: Vector Recycling and Coercion
Chapter 4: Factors in R
  • Lesson 1: Understanding Factors
  • Lesson 2: Creating and Manipulating Factors
  • Lesson 3: Levels and Labels of Factors
  • Lesson 4: Reordering Factors
  • Lesson 5: Using Factors in Statistical Models
Chapter 5: Lists in R
  • Lesson 1: Creating Lists
  • Lesson 2: Accessing List Elements
  • Lesson 3: Modifying Lists
  • Lesson 4: Nested Lists and Their Manipulation
  • Lesson 5: Useful List Functions (lapply, sapply)
Chapter 6: Matrices in R
  • Lesson 1: Creating Matrices
  • Lesson 2: Matrix Operations (addition, multiplication)
  • Lesson 3: Accessing Matrix Elements
  • Lesson 4: Transposing Matrices
  • Lesson 5: Applying Functions to Matrices
Chapter 7: Arrays in R
  • Lesson 1: Creating Arrays
  • Lesson 2: Accessing Array Elements
  • Lesson 3: Array Operations
  • Lesson 4: Manipulating Dimensionality
  • Lesson 5: Applying Functions to Arrays
Chapter 8: Data Frames in R
  • Lesson 1: Creating Data Frames
  • Lesson 2: Accessing Data Frame Elements
  • Lesson 3: Modifying Data Frames
  • Lesson 4: Merging and Combining Data Frames
  • Lesson 5: Using dplyr for Data Frame Manipulation
Chapter 9: Operators in R
  • Lesson 1: Arithmetic Operators
  • Lesson 2: Relational and Comparison Operators
  • Lesson 3: Logical Operators and Short-circuiting (&&, ||)
  • Lesson 4: Special Operators: %in%, %*%, %/%, etc.
  • Lesson 5: The Pipe Operator (%>%) and its Applications in dplyr
  • Lesson 6: Custom Operators: Defining and Using %my_op%
  • Lesson 7: Using %>% with Other Libraries (data.table, tidyverse)
Chapter 10: Control Structures
  • Lesson 1: Overview of Control Structures in R
  • Lesson 2: Conditional Statements: if, else if, and else
  • Lesson 3: Loops in R: for, while, and repeat
  • Lesson 4: Efficient Looping: Avoiding Common Pitfalls
  • Lesson 5: The switch() Function: Simplifying Conditional Logic
  • Lesson 6: Breaking and Continuing Loops: break and next
  • Lesson 7: Vectorized Alternatives to Loops
  • Lesson 8: Combining Control Structures for Complex Logic
  • Lesson 9: Error Handling in Control Structures: tryCatch() and withCallingHandlers()
Chapter 11: Functions in R
  • Lesson 1: Basics of Functions: Writing and Calling Functions
  • Lesson 2: Understanding Function Arguments: Default, Named, and ... Arguments
  • Lesson 3: Return Values and Explicit vs. Implicit Returns
  • Lesson 4: Variable Scope: Global vs. Local Environments
  • Lesson 5: Anonymous Functions and Their Use Cases
  • Lesson 6: Higher-Order Functions: lapply(), sapply(), vapply(), and More
  • Lesson 7: Creating Functions for Data Transformation and Analysis
  • Lesson 8: Advanced Function Concepts: Closures and Lexical Scoping
  • Lesson 9: Function Factories and Custom Function Generators
  • Lesson 10: Debugging and Optimizing Functions: Tools and Best Practices
Chapter 12: Data Reshaping
  • Lesson1: Reshaping Data with tidyr
  • Lesson2: Pivoting Data Frames
  • Lesson3: Melting and Casting Data
  • Lesson4: Handling Missing Values during Reshaping
  • Lesson5: Examples of Reshaping with real datasets
Chapter 13: File I/O and Data Interfaces
  • Lesson1: Working with CSV Files
  • Lesson2: Working with Excel Files
  • Lesson3: Working with Binary Files
  • Lesson4: Working with XML Files
  • Lesson5: Working with JSON Files
Chapter 14: Working with Web Data
  • Lesson1: Scraping Data from Websites
  • Lesson2: Using APIs to Fetch Data
  • Lesson3: Handling JSON Responses from APIs
  • Lesson4: Cleaning Web Scraped Data
  • Lesson5: Example Projects using Web Data
Chapter 15: Working with Databases in R
  • Lesson1: Connecting to Databases
  • Lesson2: Querying Databases using SQL
  • Lesson3: Writing Back to Databases
  • Lesson4: Using dbplyr for Database Manipulation
  • Lesson5: Handling Database Transactions
Chapter 16: Working with Graphs
  • Lesson1: Pie Charts
  • Lesson2: Bar Charts
  • Lesson3: Boxplots
  • Lesson4: Histograms
  • Lesson5: Line Graphs
  • Lesson6: Scatterplots
Chapter 17: Regular Expressions in R
  • Lesson1: Basics of Regular Expressions
  • Lesson2: Common Regex Patterns (digits, letters)
  • Lesson3: Using stringr for Regex Operations
  • Lesson4: Pattern Matching Functions (grep, gsub)
  • Lesson5: Practical Applications of Regex in Data Cleaning
Chapter 18: Object-Oriented Programming in R
  • Lesson 1: Introduction to Object-Oriented Programming in R
  • Lesson 2: Understanding S3 Objects: Basics and Implementation
  • Lesson 3: Creating and Using S4 Objects
  • Lesson 4: Working with Reference Classes (RC)
  • Lesson 5: Differences Between S3, S4, and RC Systems
  • Lesson 6: Inheritance and Polymorphism in S4 and RC
  • Lesson 7: Implementing Generic Functions and Methods
  • Lesson 8: Managing Encapsulation and Data Integrity
  • Lesson 9: Practical Applications of OOP in R (e.g., package development)
  • Lesson 10: Advanced Techniques: Integrating OOP with Functional Programming
Chapter 1: Modern Features of R (R >= 4.0)
  • Lesson 1: Overview of New Features
  • Lesson 2: Introduction to R 4.0 Features (e.g., improved performance, better package handling)
  • Lesson 3: New Language Features (e.g., native pipe operator |>, improvements in error handling)
  • Lesson 4: Changes in R's Syntax and Parsing
  • Lesson 5: Handling Large Data Sets Efficiently
  • Lesson 6: New Functions in Base R (e.g., list.files() enhancements, purrr integration)
  • Lesson 7: Compatibility with Older Versions
  • Lesson 8: Modern Debugging Tools (e.g., rlang, debugonce(), trace())
  • Lesson 9: R 4.0 and Integration with Other Languages (e.g., Python, C++)
  • Lesson 10: Future of R: Key Planned Features
Chapter 2: Performance Optimization in R
  • Lesson 1: Techniques to Speed-up R Code
  • Lesson 2: Profiling Code Performance (Rprof(), profvis())
  • Lesson 3: Efficient Memory Management (e.g., garbage collection, memory profiling)
  • Lesson 4: Vectorization Techniques and Avoiding Loops
  • Lesson 5: Using data.table for Performance
  • Lesson 6: Parallel Programming in R (e.g., parallel, future packages)
  • Lesson 7: Optimizing Data Input/Output Operations (e.g., reading large files)
  • Lesson 8: Using Caching Techniques for Faster Computations
  • Lesson 9: Memory Allocation in R: Best Practices
  • Lesson 10: Benchmarking Performance in R: Tools and Methods
Chapter 3: Multi-Dimensional Scaling
  • Lesson 1: Introduction to Multidimensional Scaling (MDS)
  • Lesson 2: Classical MDS and Metric MDS
  • Lesson 3: Non-metric MDS and Its Applications
  • Lesson 4: Visualizing MDS Results (e.g., 2D and 3D plots)
  • Lesson 5: Understanding Stress and Its Interpretation
  • Lesson 6: Choosing Between Classical and Non-Metric MDS
  • Lesson 7: Applications of MDS in Data Science (e.g., clustering, pattern recognition)
  • Lesson 8: Using R Packages for MDS (e.g., cmdscale, vegan)
  • Lesson 9: Interpreting and Validating MDS Results
  • Lesson 10: Advanced MDS Techniques (e.g., Sammon's Mapping)
Chapter 4: Statistics with R
  • Lesson 1: Descriptive Statistics: Mean, Median, Mode, and Beyond
  • Lesson 2: Probability Distributions and Their Applications
  • Lesson 3: Inferential Statistics: Hypothesis Testing
  • Lesson 4: ANOVA and Regression Analysis
  • Lesson 5: Time Series Analysis and Forecasting
  • Lesson 6: Correlation and Covariance
  • Lesson 7: Handling Missing Data and Imputation Techniques
  • Lesson 8: Bayesian Statistics with R
  • Lesson 9: Non-Parametric Statistics
  • Lesson 10: Advanced Statistical Modeling Techniques in R
Chapter 5: Machine Learning with R
  • Lesson 1: Overview of Machine Learning in R
  • Lesson 2: Data Preprocessing and Feature Engineering
  • Lesson 3: Supervised Learning: Linear and Logistic Regression
  • Lesson 4: Classification Algorithms: KNN, SVM, Random Forest
  • Lesson 5: Unsupervised Learning: Clustering with K-means, Hierarchical
  • Lesson 6: Dimensionality Reduction (e.g., PCA, t-SNE)
  • Lesson 7: Model Evaluation and Validation (e.g., cross-validation, AUC)
  • Lesson 8: Ensemble Methods: Random Forests, Boosting
  • Lesson 9: Neural Networks and Deep Learning with R
  • Lesson 10: Implementing Machine Learning Pipelines in R
Chapter 6: Optimization in R
  • Lesson 1: Introduction to Optimization Problems
  • Lesson 2: Basic Optimization Methods: Linear Programming, Gradient Descent
  • Lesson 3: Optimization with optim() and nlminb() Functions
  • Lesson 4: Constrained Optimization Techniques
  • Lesson 5: Global Optimization Methods (e.g., Genetic Algorithms)
  • Lesson 6: Simulated Annealing and Particle Swarm Optimization
  • Lesson 7: Optimization for Machine Learning Models (e.g., hyperparameter tuning)
  • Lesson 8: Non-Linear Optimization Problems in R
  • Lesson 9: Advanced Techniques: Integer Programming, Dynamic Programming
  • Lesson 10: Applications of Optimization in Data Science (e.g., portfolio optimization)
Chapter 7: Parallel Computing in R
  • Lesson 1: Introduction to Parallel Computing in R
  • Lesson 2: Basic Concepts: Processes, Threads, and Cores
  • Lesson 3: Parallel Programming with the parallel Package
  • Lesson 4: Using the future Package for Parallel Processing
  • Lesson 5: Parallelizing Loops and Operations
  • Lesson 6: Managing Data in Parallel Computing
  • Lesson 7: Debugging Parallel Code
  • Lesson 8: Performance Analysis and Profiling for Parallel Code
  • Lesson 9: Distributed Computing with snow and foreach
  • Lesson 10: Practical Applications of Parallel Computing in R
Chapter 8: stringr Package
  • Lesson 1: Introduction to the stringr Package
  • Lesson 2: Basic String Manipulation with stringr
  • Lesson 3: String Matching with Regular Expressions
  • Lesson 4: String Subsetting and Replacing
  • Lesson 5: Handling String Length and Encoding
  • Lesson 6: String Extraction and Manipulation (e.g., str_sub(), str_extract())
  • Lesson 7: Advanced String Functions (e.g., str_match(), str_count())
  • Lesson 8: Efficient String Operations with stringr
  • Lesson 9: Working with Character Vectors and Lists
  • Lesson 10: Integrating stringr with Other R Packages
Chapter 9: woeBinning Package
  • Lesson 1: Introduction to the woeBinning Package
  • Lesson 2: Weight of Evidence (WoE) and Its Applications
  • Lesson 3: Binning Continuous Variables using woeBinning
  • Lesson 4: Creating Bins Automatically and Manually
  • Lesson 5: Handling Missing Values in woeBinning
  • Lesson 6: Using WoE for Feature Transformation
  • Lesson 7: Using WoE for Logistic Regression Models
  • Lesson 8: Evaluating and Interpreting Binning Results
  • Lesson 9: Best Practices for WoE Binning
  • Lesson 10: Advanced Features of woeBinning (e.g., optimal binning, monotonicity constraints)
مدت دوره: 100 + 20 ساعت

تمامی کدهای R این دوره و همچنین فایلpdf کامل تدریس دوره در اختیار دانشجویانی که در این دوره ثبت نام نمایند، قرار خواهد گرفت. در پایان دوره، یک پروژه عملی به مدت حدود 20 ساعت با همکاری مدرس و دانشجو انجام خواهد شد، که آمادگی کامل برای ورود به بازار کار را ایجاد نماید.
هزینه هر جلسه 1 ساعته تدریس خصوصی برای دوره فوق، برای 1 نفر معادل 350 هزار تومان و برای 2 نفر، هر نفر 250 هزار تومان و برای 3 نفر، هر نفر 200 هزار تومان می‌باشد.
شماره تماس واتساپ و تلگرام: 09124908372 ، 09354908372

پیام شما





















دوره مقدماتی برنامه نویسی R


Chapter 1: Introduction to R
Chapter 2: Variables, Data Types, and Structures
Chapter 3: Vectors in R
Chapter 4: Factors in R
Chapter 5: Lists in R
Chapter 6: Matrices in R
Chapter 7: Arrays in R
Chapter 8: Data Frames in R
Chapter 9: Operators in R
Chapter 10: Control Structures
Chapter 11: Functions in R
Chapter 12: Data Reshaping
Chapter 13: File I/O and Data Interfaces
Chapter 14: Working with Web Data
Chapter 15: Working with Databases in R
Chapter 16: Working with Graphs
Chapter 17: Regular Expressions in R
Chapter 18: Object-Oriented Programming in R

دوره پیشرفته برنامه نویسی R


Chapter 1: Modern Features of R (R >= 4.0)
Chapter 2: Performance Optimization in R
Chapter 3: Multi-Dimensional Scaling
Chapter 4: Statistics with R
Chapter 5: Machine Learning with R
Chapter 6: Optimization in R
Chapter 7: Parallel Computing in R
Chapter 8: stringr Package
Chapter 9: woeBinning Package
مدت دوره: 100 + 20 ساعت

تمامی کدهای R این دوره و همچنین فایلpdf کامل تدریس دوره در اختیار دانشجویانی که در این دوره ثبت نام نمایند، قرار خواهد گرفت. در پایان دوره، یک پروژه عملی به مدت حدود 20 ساعت با همکاری مدرس و دانشجو انجام خواهد شد، که آمادگی کامل برای ورود به بازار کار را ایجاد نماید.
هزینه هر جلسه 1 ساعته تدریس خصوصی برای دوره فوق، برای 1 نفر معادل 350 هزار تومان و برای 2 نفر، هر نفر 250 هزار تومان و برای 3 نفر، هر نفر 200 هزار تومان می‌باشد.
شماره تماس واتساپ و تلگرام: 09124908372 ، 09354908372

پیام شما